Problem 2.14

Find the electric field a distance s from an infinitely long straight wire that carries a uniform line charge λ. Compare Eq. 2.9.

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Normally the curl of \mathbf{E} is also necessary to determine \mathbf{E}, but because of the cylindrical symmetry, the divergence is sufficient. Integrate both sides over the volume of a (black) coaxial cylindrical Gaussian surface with radius s and length L.

The enclosed charge is the product of the charge density with the length.

$$
\begin{aligned}
\int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} \nabla \cdot \mathbf{E}\left(s_{0} d s_{0} d \phi_{0} d z_{0}\right) & =\int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} \frac{\rho}{\epsilon_{0}}\left(s_{0} d s_{0} d \phi_{0} d z_{0}\right) \\
& =\frac{1}{\epsilon_{0}} \int_{0}^{L} \int_{0}^{2 \pi} \int_{0}^{s} \rho\left(s_{0} d s_{0} d \phi_{0} d z_{0}\right) \\
& =\frac{1}{\epsilon_{0}}(\lambda L)
\end{aligned}
$$

Apply the divergence theorem on the left side.

$$
\left.\int_{0}^{L} \int_{0}^{2 \pi}\left(\mathbf{E} \cdot d \mathbf{S}_{0}\right)\right|_{s_{0}=s}=\frac{\lambda L}{\epsilon_{0}}
$$

Because of the cylindrical symmetry, the electric field is expected to be entirely radial:
$\mathbf{E}=E(s) \hat{\mathbf{s}}$. Note also that the direction of $d \mathbf{S}$ is the outward unit vector to the Gaussian surface.

$$
\int_{0}^{L} \int_{0}^{2 \pi}\left[E(s) \hat{\mathbf{s}}_{0}\right] \cdot\left(\hat{\mathbf{s}}_{0} s d \phi_{0} d z_{0}\right)=\frac{\lambda L}{\epsilon_{0}}
$$

Evaluate the dot product.

$$
\int_{0}^{L} \int_{0}^{2 \pi} s E(s) d \phi_{0} d z_{0}=\frac{\lambda L}{\epsilon_{0}}
$$

$E(s)$ is constant on the cylindrical Gaussian surface, so it can be pulled in front of the integral.

$$
s E(s)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{0}^{L} d z_{0}\right)=\frac{\lambda L}{\epsilon_{0}}
$$

Evaluate the integrals.

$$
s E(s)(2 \pi)(L)=\frac{\lambda L}{\epsilon_{0}}
$$

Solve for $E(s)$.

$$
E(s)=\frac{\lambda}{2 \pi \epsilon_{0} s}
$$

Therefore, the electric field around the infinitely long wire is

$$
\mathbf{E}=\frac{\lambda}{2 \pi \epsilon_{0} s} \hat{\mathbf{s}} .
$$

This is the same result in Eq. 2.9 but with s instead of z.

